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Abstract: We point out that the flavor problem in theories with dynamical electroweak

symmetry breaking can be effectively decoupled if the physics above the TeV scale is

strongly conformal, and the electroweak order parameter has a scaling dimension d = 1 + ε

with ε ' 1/few. There are many restrictions on small values of ε: for ε ¿ 1, electroweak

symmetry breaking requires a fine-tuning similar to that of the standard model; large-

N conformal field theories (including those obtained from the AdS/CFT correspondence)

require fine-tuning for d < 2; ‘walking technicolor’ theories cannot have d < 2, according

to gap equation analyses. However, strong small-N conformal field theories with ε ' 1/few

avoid all these constraints, and can give rise to natural dynamical electroweak symmetry

breaking with a top quark flavor scale of order 101/ε TeV, large enough to decouple flavor.

Small-N theories also have an acceptably small Peskin-Takeuchi S parameter. This class

of theories provides a new direction for dynamical electroweak symmetry breaking without

problems from flavor or electroweak precision tests. A possible signal for these theories is a

prominent scalar resonance below the TeV scale with couplings similar to a heavy standard

model Higgs.
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1. Introduction

How is electroweak symmetry broken? The most important theoretical clue we have is the

hierarchy problem, the problem of understanding the smallness of the weak scale compared

to much higher scales in physics such as the Planck scale. Perhaps the most elegant solution

of the hierarchy problem is dynamical electroweak symmetry breaking [1]. This is the idea

that the scale of electroweak symmetry breaking is determined by a new strong interaction

scale. This naturally explains the smallness of the electroweak scale, since the strong

interaction scale is given in terms of UV quantities by

ΛEW ∼ ΛUV e
−g2

c/g
2
UV , (1.1)

where gUV is the strength of the coupling in the UV and gc ∼ 4π is the critical value

where electroweak symmetry is broken. For gUV < gc, the electroweak scale is naturally

exponentially small compared to ΛUV. This mechanism is already realized in nature in the

strong interaction sector, explaining why the QCD scale is naturally small compared to

higher scales.

This paradigm for electroweak symmetry breaking makes the general prediction that

the electroweak symmetry breaking sector is strongly coupled at the TeV scale. Within a
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few years, the LHC will definitively settle the fundamental question of whether electroweak

symmetry breaking sector is weakly or strongly coupled.

Until the LHC turns on, we must rely on indirect constraints. Dynamical electroweak

symmetry breaking faces a number of potential difficulties. First, strong interactions at the

TeV scale can ruin the agreement of the standard model with precision electroweak data.

However, if the physics that breaks electroweak symmetry is a strongly coupled theory with

no large or small parameters, ‘näıve dimensional analysis’ (NDA) gives an estimate for the

Peskin-Takeuchi S and T parameters

SNDA ∼
1

π
, TNDA ∼

1

4π
. (1.2)

For comparison, the value of the S parameter from scaled-up QCD is [2]

SQCD ∼ 0.3. (1.3)

These are rough estimates, and are comparable to the size of the current 95% confidence

level bounds [3]. These do not rule out models of dynamical electroweak symmetry break-

ing. The models that are ruled out (without fine tuning) are those containing a large

number N of degrees of freedom, in which S ∼ N/π. These include large ‘technicolor’ or

‘walking technicolor’ theories [4], and Randall-Sundrum (RS) models [5] with gauge fields

in the bulk [6], which are related to large-N conformal theories (CFT’s) by the AdS/CFT

correspondence [7].

Another general problem with models of dynamical electroweak symmetry breaking is

that flavor is generally not decoupled from the TeV scale. In technicolor models, this is

because the order parameter that breaks electroweak symmetry is a techni-fermion bilinear

ψ̄ψ with mass dimension d = 3. The standard-model fermion masses therefore arise from

4-fermion operators connecting the standard model fermions with the technifermions [8].

These operators have dimension 6, and therefore become strong at low scales. In particular

the top coupling becomes strong at a scale

QCD-like technicolor: Λt ∼ ΛEW

(
ΛEW

mt

)1/2

∼ 5 TeV, (1.4)

where ΛEW ∼ 4πv ∼ 2 TeV is the scale where the electroweak symmetry breaking sector

becomes strongly coupled. Λt is the scale where flavor must be addressed in these models.

The flavor problem is less severe in models of ‘walking’ technicolor, in which it is

assumed that the electroweak order parameter ψ̄ψ has a large anomalous dimension, and

scales as an operator with dimension d = 3−γ [4]. Walking technicolor theories are similar

to a CFT with a nearly marginal (slightly relevant) operator that runs slowly and becomes

strong and breaks electroweak symmetry. Analyses based on the truncated Schwinger-

Dyson equations show that in asymptotically free theories, d ≥ 2 [4, 9]. The scale where

the top coupling becomes strong is then raised for d = 2 to

Walking technicolor: Λt <∼ ΛEW
ΛEW

mt
∼ 10 TeV. (1.5)
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Attempts to make realistic models based on strong top dynamics can be found in Refs. [10].

In this paper, we will instead attempt to avoid strong flavor-dependent dynamics at low

scales.

A simple way to avoid the restriction d ≥ 2 is to assume that the theory is at an

interacting conformal fixed point above the TeV scale. This class of theories offers a

solution of the hierarchy problem that is identical to asymptotically free theories such as

technicolor. If the CFT is coupled to a gauge theory that is asymptotically free, this gauge

theory will become strong in the IR, causing the CFT to flow away from its fixed point.1

The resulting non-perturbative dynamics can give rise to electroweak symmetry breaking.

Another possibility is that the CFT contains a nearly marginal operator that becomes

strong in the IR. These mechanisms are attractive because it generates an exponentially

large hierarchy. Another possible mechanism exists if the CFT has a relevant operator

that transforms nontrivially under a global symmetry, e.g. a discrete symmetry. The

coefficient of this operator can then be naturally small, and can set the scale for the

breaking of conformal and electroweak symmetry. In this mechanism, the large hierarchy

is put in by hand in the form of a small coefficient, but it is technically natural.

In a strong CFT, flavor arises from couplings of the form q̄qO, where q is a standard-

model fermion and O is a CFT operator with quantum numbers of the Higgs. In order to

decouple flavor, we would like to have the scaling dimension d of the operator O as small

as possible. In CFT’s, bound on the scaling dimension of a scalar operator is d ≥ 1 [12].

In the limit d → 1, the scalar operator behaves as a weakly-coupled scalar field, which is

just the standard-model Higgs. The theory is therefore fine-tuned and does not solve the

hierarchy problem. However, for d = 1+ε, with ε ' 1/few, the top quark becomes strongly

coupled at the scale

Conformal dynamics: Λt ∼ ΛEW

(
ΛEW

mt

)1/ε

. (1.6)

This scale is exponentially large for small ε, and therefore we can plausibly have sufficiently

large ε to avoid fine-tuning, while decoupling the flavor to high scales. How Λt must be to

avoid flavor-changing neutral currents depends on the nature of flavor violation at this scale.

The most pessimistic case imaginable is that there are unsuppressed strong contributions

to operators that contribute to K–K̄ mixing at the scale Λt. This requires Λt ∼ 105 TeV,

which is obtained for ε ' 1
5 . If we assume some suppression of flavor violation for the

lightest generation, we expect that the flavor scale can be significantly lower. For example,

a single Yukawa suppression of four-fermion operators contributing to K–K̄ mixing lowers

the flavor scale to Λt ∼ 3× 103 TeV, which requires ε ' 1
3 . Such values of ε are definitely

plausible. For example, in F-theory constructions of AdS5 duals, one finds scalar operators

with dimension 4
3 and 6

5 [13]. The possible application of non-supersymmetric CFT’s with

low-dimension scalar operators to the electroweak hierarchy problem was also discussed

in Ref. [14].

1The same mechanism was employed for walking technicolor theories in Ref. [11], where the QCD

gauge coupling plays the role of the asymptotically free gauge group. This mechanism näıvely predicts

ΛEW ∼ ΛQCD, and we do not consider it here.

– 3 –



J
H
E
P
0
9
(
2
0
0
6
)
0
7
0

The Randall-Sundrum model gives an explicit example of a 4D CFT, and has been

extensively discussed as a solution of the hierarchy problem. In this model, the Higgs is

usually localized in the the IR brane to obtain a large hierarchy. In this case the Higgs

field can be thought of as a bulk field with a large mass, and in the corresponding 4D

interpretation the electroweak order parameter has a large (d > 4) scaling dimension.2

To obtain sufficiently large fermion masses, the fermions are put on the IR brane or in

the bulk [15]. In 4D language, this corresponds to generating fermion masses by making

them mix with composite fermions so that they can feel the symmetry breaking in the

strong sector. The mixing of the standard-model fermions with composite fermions was

considered previously in the context of QCD-like technicolor [16]. Theories of this type

are interesting alternatives to our scenario. As we discuss in the appendix, these theories

generally have a potentially viable region of the parameter space where ∆ρ is just at

the current experimental bound while corrections to Z → bb̄ require fine-tuning at the

10% level [17]. However, we will pursue scenarios where the standard-model fermions are

completely elementary, just like in conventinal technicolor theories.

It is a simple matter to modify the RS model to give the electroweak order parameter

a smaller dimension: one simply puts a Higgs scalar in the bulk, and leaves the fermions

on the UV brane. Electroweak symmetry is broken by a Higgs potential localized on

the IR brane (ensuring that this is an IR effect) and the bulk Higgs field communicates

electroweak symmetry breaking to the fermions on the UV brane. Taking the Higgs bulk

mass parameter to be negative makes the dimension of the Higgs operator in the 4D CFT

description smaller. However, we will show that scalar operators with d < 2 are fine-tuned

in RS. This can be traced to the fact that RS is a large-N theory, and this fine-tuning is

common to all large-N theories.

We are therefore led to a rather dark corner of theory space: non-supersymmetric 4D

strongly-coupled conformal field theories with small N . These can have a scalar operator

with dimension d = 1 + ε with ε ∼ 1/few, and can dynamically break electroweak sym-

metry at the TeV scale while giving large fermion masses without flavor-changing neutral

currents. Small-N theories also have an acceptably small S parameter. Not much is known

about the dynamics of such theories, and so our discussion of these theories is necessarily

speculative. Above the TeV scale, the theory becomes conformally invariant, and the new

strong conformal dynamics can be directly tested in direct analogy with the way QCD is

tested at a high-energy e+e− collider.3 However, even the LHC will be limited to explor-

ing the lightest ‘hadrons’ of the CFT, and it is not possible to make rigorous predictions

for this regime. In the case where ε arises from a (moderately) small parameter in the

fundamental theory, we argue that the theory contains a prominent scalar resonance near

(but somewhat below) the TeV scale, with couplings similar to those of a heavy standard-

model Higgs, but deviating from the standard-model couplings by order ε. This provides

an interesting and well-motivated signal to look for at the LHC, whose observation would

clearly motivate going to even higher energies in the future.

2By analogy to ‘walking technicolor,’ this can be thought of as ‘speeding technicolor.’
3See Ref. [18] for a supersymmetric example.
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This paper is organized as follows. In section 2, we review the constraints on the

operator dimension d in various types of known models and argue that small-N theories

avoid all constraints and can have d < 2 without fine tuning. In section 3, we study the

phenomenology of these theories, focusing mainly on the possibility of a Higgs-like scalar

resonance. Section 4 contains our conclusions.

2. Scalar operators with 1 < d < 2

As discussed in the introduction, an important question for models of dynamical elec-

troweak symmetry breaking based on conformal field theory is the scaling dimension d of

the ‘Higgs’ operator O that acts as the electroweak order parameter. In order to decouple

flavor, we would like to have d as small as possible, while avoiding fine-tuning. In this

section we review what is known about low-dimension scalar operators, and argue that

theories with strong coupling and small N can give operators with d < 2 without fine

tuning.

2.1 d ' 1

General theorems of conformal field theory tell us that a scalar operator O must have

dimension d ≥ 1 [12]. Furthermore, an operator with dimension d = 1 is a free field

(meaning that correlation functions of O are the same as those of a free field). It is

therefore clear that for d sufficiently close to 1, the theory is equivalent to a CFT weakly

coupled to a Higgs field, which clearly does not solve the hierarchy problem. In CFT

language, this is because the operator O†O has dimension close to 2d, which is relevant for

d < 2. The existence of a relevant operator that cannot be forbidden by symmetries means

that the fixed point is not reached unless the coefficient of the relevant operator is tuned.

This argument seems to suggest that the theory is fine-tuned for any d < 2, but it is limited

to weak coupling because we have assumed that the dimension of O†O is approximately 2d.

Since the anomalous dimension d−1 is of order a one-loop factor, we expect the anomalous

dimension of O†O to also be of order d − 1 for a weakly-coupled theory with d − 1 ¿ 1.

But for strong coupling the operator O†O will have a large anomalous dimension, and its

dimension will not have any simple relation to the dimension of O.4 Exceptions to this are

large-N theories, as we will discuss below.

How small can we take ε = d− 1? In a nearly free theory with an elementary scalar, ε

is an anomalous dimension, which is of order a loop-counting factor in the theory. In other

words, perturbation theory is an expansion in powers of ε, and we expect it to break down

when ε >∼ 1. For values like ε = 1/few, perturbation theory is no longer a reliable guide.

In these theories, it is possible that the operator O†O has a sufficiently large anomalous

dimension to make it an irrelevant operator. We conclude that the general theorem does

not imply that theories with ε ∼ 1/few are fine-tuned.

4In fact, for a strong CFT the operator “O†O” has no a priori meaning. The remarks above apply if

we define O†O to be the operator of lowest scaling dimension in the operator product expansion of O×O†

other than the unit operator.
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2.2 Large-N theories

We now consider large-N CFT’s. In large-N theories, the matrix elements of operators

factorize, and we can conclude that the operator O†O has dimension near 2d (up to 1/N

corrections) even if the theory is strongly coupled. This is true even for theories with a

large ’t Hooft parameter, such as the 4D dual of the Randall-Sundrum (RS) model, as we

will discuss below. The operator O†O is therefore relevant for all d < 2, and we conclude

that large-N CFT’s with scalar operators with d < 2 are fine-tuned.

Large-N theories are also disfavored as a dynamical electroweak symmetry breaking

sector because they give contributions to the S parameter that grow with N . In theories

with a small ’t Hooft parameter, this is simply because S arises from a vacuum polarization

effects that count the number of microscopic states. We will see that RS models, which

have a large ’t Hooft parameter, also predict large S in the absence of fine-tuning.

For these reasons, we are led to consider theories that do not have large N , and which

cannot be obtained from RS setup.

2.3 QCD-like theories

SU(N) gauge theories with F flavors of Dirac fermions loses asymptotic freedom for F/N >
11
2 , and for F/N = 11

2 − δ with δ ¿ 1 the theory has a weakly coupled ‘Banks-Zaks’ fixed

point [19]. This allows us to infer the existence of QCD-like theories that flow to strongly

coupled CFT’s in the IR. The loop expansion parameter at the Banks-Zaks fixed point is

δ, so we know there is a conformal window for a range of δ. The conformal window ends

at some value δ ∼ 1, and the CFT’s at this end of the conformal window are necessarily

strongly coupled. Although this argument is strictly speaking limited to large N (where δ

can be thought of as a continuous parameter), it is very reasonable to assume that there

are also small-N asymptotically free gauge theories that flow to strong conformal fixed

points.

It is therefore natural to ask whether theories of this kind can give rise to a conformal

sector with scalar operators with d < 2. To obtain a tractable approximation to the non-

perturbative dynamics of QCD-like theories, it is traditional to truncate the Schwinger-

Dyson equations by replacing the full gauge propagator and gauge-fermion vertices by

their tree-level values in the Landau gauge, giving rise to the so-called ‘gap equation.’

However, this limits the parameterization of the non-perturbative effects to spontaneous

chiral symmetry breaking via a dynamically generated ‘constituent quark mass.’ In partic-

ular, it is not able to describe the conformal fixed point dynamics of the Banks-Zaks fixed

point.

The conformal window was studied using the gap equation in Ref. [20], which concluded

that the conformal window in QCD ends at Nf ' 4Nc. It would be very interesting to

further explore non-perturbative approximations to QCD-like theories that can capture the

physics of the perturbative end of the conformal window and model the non-perturbative

dynamics at the strong end of the conformal window. This is beyond the scope of the

present work.

– 6 –
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2.4 d in Randall-Sundrum models

We now consider the Randall-Sundrum (RS) model, which gives us a concrete, calculable

CFT. To make the connection to conformal field theory as transparent as possible, it is

convenient to write the 5D AdS metric as

ds2 = µ2ηµνdx
µdxν − 1

k2

dµ2

µ2
, (2.1)

where k is the AdS curvature, and µIR ≤ µ ≤ µUV parameterizes the extra dimension.

The fact that this metric is invariant under the transformation, xµ → s−1xµ and µ→ sµ,

naturally leads to the interpretation that the parameter µ is proportional to the energy

scale in the corresponding 4D CFT. We assume that all dimensionful quantities in the 5D

lagrangian are O (1) in units of k. The physical size of dimensionful couplings at a position

µ in the bulk is then given by kµ. For simplicity, we will use units where k = 1.

We consider a 5D complex scalar doublet H with bulk mass M . We will be interested

in the situation where H gets a VEV, breaking an SU(2)L gauge symmetry.5 It is therefore

convenient to parameterize the field by

H = eiΠaτa

(
0

Φ

)
, (2.2)

where Φ and Πa (a = 1, 2, 3) are real fields. When Φ gets a VEV, the zero mode of Πa

parameterizes the Goldstone degrees of freedom. In this section, we are interested in the

effects of the VEV, and so we will mainly concentrate on the field Φ. Solving the equation

of motion in the bulk, we obtain the most general 4D Poincare invariant solution:

Φ = Aµn−4 +Bµ−n (2.3)

where n ≡ 2 +
√

4 +M2. We restrict attention to masses satisfying the Breitenlohner-

Freedman bound M 2 ≥ −4 [21], so that n ≥ 2. For the special case n = 2, the general

solution is

Φ = Ãµ−2 + B̃µ−2 lnµ. (2.4)

We will focus on the generic case (2.3) below.

We now discuss the CFT interpretation of the solution Eqs. (2.3) for n > 2. According

the the AdS/CFT correspondence, the field Φ is associated with an operator O of the 4D

CFT. As we will review below, in the conventional case the operator O has dimension

d = n, which implies d ≥ 2. To obtain a 4D CFT with d < 2, we must change the UV

boundary condition [22]. Specifically, we must choose the UV boundary condition to set

B = 0, so that the IR boundary condition determines A. This can be done by adding a

UV boundary lagrangian

LUV = −m|H|2 = −mΦ2. (2.5)

5We will ignore U(1)Y in this section for simplicity. We will also ignore an SU(2)R gauge symmetry we

need to put in the bulk for any realistic model to guarantee a custodial SU(2) symmetry in the 4D CFT.

Adding these complications is straightforward and does not alter our conclusions.

– 7 –
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The UV boundary condition is then
[
µ
∂Φ

∂µ
+mΦ

]

UV

= 0, (2.6)

µ
∂Πa

∂µ

∣∣∣∣
UV

= 0, (2.7)

which gives

(n− 4 +m)Aµn−4
UV = (n−m)Bµ−nUV. (2.8)

The generic solution is A/B ∼ µ4−2n
UV , but we can tune B = 0 by taking

m = 4− n. (2.9)

Note that we are tuning a relevant operator that cannot be forbidden by symmetries.

We now specify the IR boundary conditions. We assume that the IR boundary condi-

tions set

Φ|IR = κ, (2.10)

µ
∂Πa

∂µ

∣∣∣∣
IR

= 0. (2.11)

This can be viewed as the result of adding an SU(2) invariant IR potential of the form

VIR =
λ

2
(|H|2 − κ2)2 (2.12)

and taking the limit λ → ∞ so that the radial component of the field is frozen. (Note

that the boundary conditions Eqs. (2.7) and (2.11) ensure that the fields Πa each have a

massless Goldstone zero mode.) The results for the coefficients B and A are then

B =





κµnIR

[
1 +O

(
(µIR/µUV)2n−4

)]
‘generic’

0 tuned
(2.13)

and

A =





n−m
n− 4 +m

Bµ4−2n
UV ‘generic’

κµ4−n
IR tuned

(2.14)

Now suppose that the VEV for the field Φ spontaneously breaks an SU(2) gauge

symmetry in the bulk and generates a mass for a fermion localized on the UV brane. This

is the RS description of breaking the gauge symmetry by the VEV of the operator O and

giving mass to an elementary fermion coupling to O. The 4D gauge boson mass is

m2
W =

g2
4

2

∫ µUV

µIR

dµµΦ2 (2.15)

– 8 –



J
H
E
P
0
9
(
2
0
0
6
)
0
7
0

=





g2
4κ

2

4(n− 1)
µ2

IR

[
1 +O

(
(µIR/µUV)2n−4

)]
‘generic’

g2
4κ

2

4(3− n)
µ2

IR

[
1− (µIR/µUV)6−2n

]
tuned

(2.16)

where g4 is the gauge coupling of the 4D gauge zero mode. In the tuned case with n > 3,

the gauge boson mass grows large as µUV increases, so mW is sensitive to the UV scale.

The physical interpretation of this case is that the gauge symmetry is broken in the UV,

not in the IR. This means that this case does not describe dynamical symmetry breaking.

Therefore, we will restrict to n < 3 in the rest of the paper. However, note that even if

n < 3, taking the n→ 3 limit in the tuned case leads to

m2
W →

1

2
g2

4κ
2µ2

IR ln (µUV/µIR) , (2.17)

so the gauge boson mass is logarithmically sensitive to the UV. We will discuss the 4D

interpretation of the logarithm shortly.

Now consider fermions, a doublet Q and a singlet tc localized on the UV brane. We

add the UV boundary term

∆LUV = µ−1
UV

[
Q̄i/DQ+ t̄c/∂tc

]
− [ytHQt

c + h.c.] , (2.18)

where the factor µ−1
UV multiplying the kinetic term arises from the conformal factor in the

metric. The fermion mass is therefore

mt = ytκµUVΦUV (2.19)

=





2n− 4

n− 4 +m
ytκµIR (µIR/µUV)n−1 ‘generic’

ytκµIR (µIR/µUV)3−n tuned

(2.20)

We therefore obtain

mt

mW
∼





(
µIR

µUV

)n−1

‘generic’

(
µIR

µUV

)3−n
tuned

(2.21)

In the 4D CFT, the UV boundary term Eq. (2.18) corresponds to coupling an elemen-

tary fermion to the CFT operator O:

∆LCFT = ctOQtc + h.c. (2.22)

– 9 –
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The results for the fermion and gauge boson masses are therefore consistent with the 4D

interpretation that O has scaling dimension

d =

{
n ‘generic’

4− n tuned
(2.23)

In the tuned case, recall that we require n < 3 to avoid breaking the gauge symmetry in the

UV. At the critical value n = 3 Eq. (2.17) shows that we have logarithmic UV sensitivity.

This is easy to understand. The effective lagrangian at the IR scale has the form

Leff = Z|Dµh|2 − V (h) + [ythQt
c + h.c.] , (2.24)

where h is the lightest KK mode of the scalar. The logarithm in Eq. (2.17) reflects the fact

that the wavefunction factor Z depends logarithmically on the UV scale, because in the

n→ 3 (i.e. d→ 1) limit h is just a weakly-coupled scalar. (Note that g and κ are quantities

defined at the IR scale.) There is no logarithm in mt as n→ 3 because the fermion Yukawa

coupling is not renormalized (apart from the wavefunction renormalization in Z) within

our approximation of treating Qtc as a background field. We therefore conclude that the

tuned case can indeed describe operators with dimension 1 < d < 2.

Now we study how much fine tuning is actually necessary to reach the tuned case. If

we deviate from the fine-tuning condition (2.9) by ∆m, the coefficient B now has to be

non-zero to satisfy the UV boundary condition (2.8):

B ∼ κ∆mµnIR

(
µUV

µIR

)2n−4

. (2.25)

The condition that this is a small correction at the IR brane requires Bµ−nIR
<∼ κ, i.e.

∆m

m
<∼
(
µIR

µUV

)4−2d

¿ 1, (2.26)

where we have used n = 4 − d. This quantifies the amount of the fine-tuning. Note that

for d = 1 we have the same tuning as in the standard model. Of course, we need only

something like d = 5
4 to push the flavor scale up to 104 TeV, but even in this case the

fine-tuning is ∼ 10−6, which is unacceptable.

The 4D CFT interpretation of this fine-tuning is easy to understand. Since the CFT

contains an operator O, it also contains the operator O†O which is invariant under all

symmetries. The AdS/CFT correspondence relates operator products to multi-particle

states, and the dimensions of composite operators factorize essentially as a consequence

of the factorization properties of multi-particle states in a weakly-coupled 5D field theory.

The dimension of the operator O†O is therefore 2d, which means it is a relevant operator.

Note that Eq. (2.26) is exactly the amount of fine-tuning required to suppress the effects

of a relevant operator of dimension 2d.

A convincing check of this interpretation of the fine-tuning can be obtained by comput-

ing the vacuum energy in the presence of the VEV as a function of the tuning parameter

∆m. The bulk action integral vanishes thanks to the bulk equation of motion, leaving only

– 10 –
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the boundary terms. Since the UV boundary condition is chosen to cancel the boundary

term at the UV brane, we only get the contribution from the IR boundary:

V (µIR) ∼ µ5Φ
dΦ

dµ

∣∣∣∣
IR

∼ µ4
IR

[
1 +

∆m

m

(
µIR

µUV

)2d−4

+ · · ·
]
. (2.27)

On the other hand, in the 4D CFT language, we are adding the operator

∆LUV = λUVO†O (2.28)

in the UV. If the dimension of O†O is D, then the coupling λ should scale with energy as

λ(µ) = λUV

(
µ

µUV

)D−4

. (2.29)

The vacuum energy associated with O†O therefore has the form

V ∼ µ4
IR

[
1 + λ(µIR) + λ2(µIR) + · · ·

]

∼ µ4
IR

[
1 + λUV

(
µIR

µUV

)D−4

+ · · ·
]
. (2.30)

Comparing this with Eq. (2.27), we see that D is indeed equal to 2d and that the tuning

∆m→ 0 precisely corresponds to setting λUV = 0. Note that this is a tree-level calculation

on the AdS side, which corresponds to a calculation at the leading order in the 1/N

expansion on the CFT side. Loop corrections correspond to 1/N corrections, and are

expected to give corrections to the relation D = 2d. These corrections are suppressed by

at least a loop factor, and are small whenever perturbation theory is under control. They

therefore cannot be used to make the RS model with d < 2 natural, but it does illustrate

that the relation D = 2d is not exact in general.

We will have more to say about the 4D interpretation of the RS model with d < 2 in

subsection 3.1 below.

2.5 S in Randall-Sundrum models

We showed above that d < 2 requires tuning in the RS setup, but argued that this is

because these are large-N CFT’s. But there is another problem with large-N theories.

The fact that RS theories are large-N theories means that we also expect them to give

large contributions to the S parameter. However, because the 4D CFT corresponding to

an RS model also has large ’t Hooft parameter, we cannot use NDA to estimate S. We

therefore briefly review the size of S in these theories. Complete results with numerical

coefficients can be found in Refs. [23].

Contributions to S can arise in various ways, but here let us focus on the bulk contribu-

tion to S arising from the mixing between the unperturbed gauge zero mode and the bulk

KK modes via the Higgs kinetic term [17]. This is not necessarily the largest contribution

– 11 –
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to S, but it can be easily estimated, and we will see below that it is already too large.

The leading effect of this kind comes from tree-level mixing between the zero-mode gauge

bosons and the excited KK modes:

Sbulk ∼ 16πg2
5

(
v

mKK

)4

, (2.31)

where g5 is the 5D gauge coupling, v = κµIR is the 4D VEV that breaks electroweak

symmetry, and mKK ∼ µIR is the mass of the lightest KK mode. (Recall we are using units

where k = 1.) The 5D gauge coupling parameterizes the CFT contribution to the running

of the 4D gauge coupling. For example, if there is a gauge kinetic term localized on the

UV brane with coefficient 1/g2
UV, we have

1

g2
4

=
1

g2
UV

+
1

g2
5

ln
µUV

µIR
. (2.32)

In order to avoid a Landau pole below the UV scale, we require

g2
5
>∼ g2

4 ln(µUV/µIR). (2.33)

In order to have Sbulk <∼ SNDA ∼ 1/π (roughly the current experimental limit), we must

have

m2
KK

>∼ 4πv2
[
g2

4 ln(µUV/µIR)
]1/2

. (2.34)

This shows that small values of S can only arise from a hierarchy between v and mKK,

which however requires fine tuning. The amount of fine tuning is given by

tuning ∼
(

4πv

ΛIR

)2

<∼
1

N2
KK

4π
[
g2

4 ln(µUV/µIR)
]1/2 (2.35)

where ΛIR is the cutoff in IR units and NKK = ΛIR/mKK counts the number of KK modes

below the cutoff. We see that we can make S small only at the price of either fine-tuning,

or taking NKK to be small, meaning that the cutoff is so low that it describes only a small

number of KK modes. In this case, the extra dimension is not really buying any predictive

power relative to a general effective theory with a cutoff near the TeV scale. Said another

way, since we must allow arbitrary higher-dimension operators suppressed by powers of

ΛIR, the expansion parameter of the effective theory is 1/NKK.

3. A composite higgs?

In this section, we discuss the general phenomenology of a electroweak symmetry breaking

sector consisting of a small-N strongly coupled CFT with an electroweak order parameter

with dimension d = 1 + ε, with ε ∼ 1/few. In the case where the (moderately) small value

of ε arises from a small parameter in the fundamental theory, we argue that the theory

contains a prominent sub-TeV scalar resonance which can be thought of as a Higgs that is

‘partially’ composite at the TeV scale. The compositeness is ‘partial’ in the sense that the

couplings of the scalar to the strong TeV scale dynamics is parametrically suppressed by

powers of ε.
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3.1 Light scalars in the Randall-Sundrum model

Although we are interested in 4D CFT’s that do not have a simple higher-dimensional

interpretation, we begin by determining the properties of the lightest scalar KK modes in

the RS model. We find the results illuminating, and will argue that they have a simple

physical interpretation that extends to the case of a partially composite Higgs.

To make a fully realistic RS model, we need a model with custodial symmetry. As

explained in Ref. [17] this can be done by gauging a SU(2)L × SU(2)R in the bulk and

breaking this down to SU(2)L × U(1)Y on the UV brane.6 Since we are using RS only as

a guide, we will ignore the issue of custodial symmetry and consider the model with only

SU(2)L × U(1)Y gauged in the bulk. However, it is straightforward to construct a fully

realistic RS model at the price of fine-tuning.

We now consider the KK decomposition of the bulk scalar doublet H. We are mainly

interested in the KK modes of Φ, which contains the light Higgs-like boson (see Eq. (2.2)).

The eigenvalue condition for KK masses of the Φ with the fine-tuned boundary condition

Eq. (2.9) in the UV and the shifted boundary condition Φ(µIR) = 0 in the IR which

corresponds to Eq. (2.10) after subtracting the VEV is given by

J−1+ε(x)

J1−ε(x)
= − Jε(y)

J−ε(y)
, (3.1)

where

x =
m

µIR
, y =

m

µUV
. (3.2)

Expanding this for small x, y, and ε, we obtain the mass of the lightest mode:

m2
0 = 4εµ2

IR

[
1−

(
µIR

µUV

)2ε
]−1 [

1 +O(ε) +O(x2) +O(y2)

]
(3.3)

'





4εµ2
IR for εÀ 1/ ln(µUV/µIR)

2µ2
IR

ln(µUV/µIR)
for ε¿ 1/ ln(µUV/µIR)

(3.4)

The 4D CFT interpretation of these results is the following. The scalar would be exactly

massless in the limit of unbroken conformal symmetry, but the conformal symmetry is

broken both in the UV and the IR. For finite ε in the limit µUV → ∞, the IR breaking

of conformal invariance dominates. Hence, if the scalar couples to the CFT with full

strength, the conformal breaking should give m2
0 ∼ µ2

IR. However, in our case we expect

from the general CFT theorem that the scalar should decouple from the CFT for ε → 0.

We exactly see this behavior in the first case in Eq. (3.4), where we have m2 ∼ εµ2
IR, and

6Ref. [17] gauged SU(2)L× SU(2)R×U(1)B−L in the bulk, which is necessary to properly embed U(1)Y

for bulk fermions. If fermions are elementary, as assumed here, there is no need for the U(1)B−L factor in

the bulk gauge group.
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the interpretation of this is that ε controls the couplings of the scalar to the part of the

CFT in which conformal symmetry is spontaneously broken (by the IR brane). On the

other hand, the UV breaking of conformal symmetry dominates for finite µUV and ε→ 0.

In this limit the scalar decouples from the CFT at low energies (as required by the general

theorem) but only logarithmically, just like an elementary scalar.

For realistic models, the question of whether the breaking of conformal invariance is

dominantly in the UV or the IR depends on the scale µUV where the theory approaches

the conformal fixed point. This scale could be as high as the Planck scale even if the

flavor scale is much lower, since the top flavor interactions may be a weak perturbation on

the strong CFT dynamics. In this case ln(µUV/µIR) ∼ 40, and since we are interested in

ε ∼ 1/few, we expect that the breaking of conformal symmetry is dominated in the IR. We

will therefore mainly focus on this case in the following.

We have taken ε¿ 1 in the above discussion in order to focus on the parametrics, but

we are really interested in ε ∼ 1/few. We can easily compute the mass of the scalar KK

modes in this simple model to see what we might expect for larger values of ε. In order to

focus on the contribution to the scalar mass from the IR breaking of conformal symmetry

we take µUV →∞, in which case the eigenvalue equation Eq. (3.1) for φ becomes

J−1+ε(x) = 0, (3.5)

while the eigenvalue equation for the ‘Goldstone’ modes Πa is

J1(x) = 0. (3.6)

These can be solved numerically, and the mass of the lightest scalar resonances as a function

of ε are plotted in figure 1. We see that there is a light ‘Higgs’ even for moderate values of

ε. Note that for ε = 0 we recover a tower of completely degenerate doublets.7

To get more evidences for our claim that ε controls the coupling of the scalar to the

CFT, we now compute the couplings of this scalar resonance to gauge bosons and fermions.

Writing the scalar field as

Φ(x, µ) =
∞∑

n=0

fn(µ)φn(x), (3.7)

the KK wavefunctions fn are given by

fn(µ) =
1

µ2

[
AnJ−1+ε

(
mn

µ

)
+BnJ1−ε

(
mn

µ

)]
. (3.8)

The Bessel functions are linearly independent for 0 < ε < 1, which is sufficient for our

purposes. The boundary conditions determine the ratio Bn/An and the mass mn. The UV

boundary conditions then give

Bn
An

=
Jε(yn)

J−ε(yn)
'
(yn

2

)2ε
. (3.9)

7This is an exact statement since J−1(x) = −J1(x).
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Fig. 1. The masses of the scalar (solid lines) and Goldstone (dashed lines) resonances as

a function of ε in the RS version of the CFT.

where yn = mn/µUV. For simplicity we again take µUV →∞ to focus on the IR effects, in

which case this simply gives Bn = 0.

For the lightest KK mode we have m0 ¿ µ for all µ, and we can expand the Bessel

function J−1+ε(y0) to obtain

f0(µ) ' A0

µ2

[
ε

(
m0

2µ

)−1+ε

−
(
m0

2µ

)1+ε
]
. (3.10)

The two terms are parametrically the same size at the IR brane because m2
0 ' 4εµ2

IR (See

Eq. (3.4)). We determine A0 by demanding that the real scalar field φ0 is canonically

normalized:

1
2 =

∫ µUV

µIR

dµµ f2
0 (µ). (3.11)

The integral over the first term in Eq. (3.10) involves
∫
dµµ−1−2ε = −µ/2ε, and the

additional factor of 1/ε makes this term dominate in the determination of A0. A similar

integral appears when computing the φWW coupling, and we therefore find that the φWW

coupling is equal to the standard model value up to O(ε) corrections. More specifically, we

find

gφWW = g
(SM)
φWW

[
1− ε

4
+O(ε2)

]
. (3.12)

Similarly, when computing the coupling of φ to the top quark, we note that the first term

in Eq. (3.10) dominates at large µ, so the top coupling is also approximately equal to the

standard model, but this time with corrections suppressed by m2
0/µ

2
UV. This is so small

that dominant corrections in fact come from perturbative top loops. Therefore, we see that
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in the RS model the couplings of the light scalar to top quarks is very nearly equal to the

standard model value, while the couplings to gauge bosons has a larger, order ε deviation

from the standard model value.

We now describe the 4D CFT interpretation of these results. The KK modes get

massive due to the breaking of conformal symmetry, which occurs in both the UV and

the IR. The UV breaking can be decoupled by sending µUV → ∞. As ε → 0 a full scalar

doublet is becoming massless, with deviations from standard model couplings suppressed

(at least) by powers of ε. Therefore, this supports our interpretation that the scalar doublet

is coupled to the strong CFT with a coupling that vanishes as a power of ε. In RS setup

fine-tuning is required to decouple the UV breaking of conformal invariance, so this is not

a viable solution to the hierarchy problem, but as explained in section 2 this fine-tuning

need not be present in small-N models, which we turn to next.

3.2 Parametrically light scalars from strong conformal dynamics

We now consider a strongly coupled small-N CFT with an electroweak order parameter

(‘Higgs operator’) O with dimension d = 1 + ε. The key feature of this theory is that ε

is small enough to generate a large hierarchy between the flavor scale and the electroweak

scale (see Eq. (1.6)), but at the same time large enough that the operator O†O (‘Higgs mass

term’) is irrelevant. We argued above that for ε ¿ 1, the dimension of O†O is 2d +O(ε),

which is therefore relevant. We are assuming that ε ∼ 1/few, but the O(ε) corrections to

the dimension of O†O are large enough to make the operator irrelevant.

There are at least two ways one can imagine this coming about. The first possibility

is that there is no large or small parameter in the theory, and the fact that d is close to

1 is simply a numerical accident. In this case, we expect the low-energy effective theory

below the scale Λ to be a general strongly coupled NDA theory with no small parameters.

Another possibility is that there is in fact a moderately small parameter in the fundamental

theory that controls the size of ε. (For example, in the RS model this parameter is the

mass of the bulk scalar.) For ε ∼ 1/few it is expected that not all quantities will be

numerically small even if parametrically suppressed by a power of ε. We assume one such

numerical accident that the anomalous dimension of O†O is large.8 In this subsection, we

will describe the effective field theory below the TeV scale for this theory. We will start

with the limit ε¿ 1, and then extrapolate to ε ∼ 1/few.

As argued above, for ε ¿ 1 the correlation functions of the operator O are approx-

imated by the correlation function of an elementary scalar doublet h. In the range of

energies where the theory is approximately conformal, the theory can therefore be written

in terms of a lagrangian where h is coupled to a strong sector:

L = |Dh|2 −m2|h|2 − 1
4λ|h|4 + c1(O1h

† + h.c.) + · · · , (3.13)

where O1 is an operator in the strongly-coupled sector of the theory with the same quantum

numbers as h. We are interested in the case where the coupling to the strong sector is

8We remind the reader that the hierarchy between the flavor scale and the electroweak scale is exponen-

tially sensitive to ε, and therefore is expected to be more robust than the smallness of power corrections.
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sufficiently strong so that the operators |h|2 and |h|4 have large anomalous dimensions,

and are irrelevant. This allows us to neglect the couplings m2 and λ in the conformal

regime without fine tuning, and is the basic reason that this class of theories solves the

hierarchy problem. In general, large anomalous dimensions for the operators |h|2 and |h|4
imply that ε ∼ 1, where ε is defined as the anomalous dimension of h itself. However, it

is an assumption of our analysis that ε ∼ 1/few is still small enough that an expansion in

powers of ε gives at least qualitatively correct results for observables.

In order for the coupling c1 to be important near the fixed point of the theory, the

scaling dimension of the operator must be sufficiently small (3 in the limit ε¿ 1). We must

assume that such an operator exists in order for h to have sufficiently strong couplings to

the strong sector of the CFT. In order to make a contribution of order ε to the anomalous

dimension of the scalar field, we must have

c1 ∼ 4π
√
ε . (3.14)

The powers of 4π are counted using NDA, which assumes that the theory has no large or

small parameters other than ε. This is valid because our theory is by assumption a small-N

theory.9

We can also consider couplings such as

∆L = c2O2|h|2 + c3(O3h
2 + h.c.) + · · · (3.15)

However, since by assumption |h|2 has scaling dimension greater than 4, c2 is irrelevant

near the fixed point. The coupling c3 is only important at the fixed point if the SU(2)W
triplet operator O3 has a sufficiently low dimension (2 in the limit ε¿ 1), but there is no

reason to expect that an operator of such low dimension exists in the strong sector of the

CFT. This obviously generalizes to coupling involving higher powers of h, and we conclude

that the coupling of a single power of h to the strong sector of the CFT will dominate at

the fixed point.

Now suppose that the conformal symmetry is broken at an IR scale Λ. (We assume that

the conformal fixed point is reached at very high energies, and therefore neglect any UV

breaking of conformal symmetry.) For example, we can have a new non-abelian gauge group

that gauges a global symmetry of the CFT. If the new gauge coupling is asymptotically

free, it will get strong in the IR and break the conformal symmetry, as discussed in the

introduction. The point of this is that the breaking of conformal symmetry occurs in

the strong sector of the CFT, since the new gauge fields do not couple directly to h.

Therefore, h learns the conformal breaking only via coupling to the CFT, and we would

like to understand how ε controls this communication.

Below the scale Λ, the coupling c1 in Eq. (3.13) will generate all possible interactions of

the scalar field h. In particular, it will generate the |h|2 and |h|4 terms, which are no longer

rendered irrelevant by the strong conformal dynamics. The effective lagrangian below the

scale Λ is then

Leff = |Dh|2 +
Λ4

16π2
F
(

4π
√
ε h

Λ
,
Dµ

Λ

)
, (3.16)

9NDA does not hold in the RS model, but the argument for the powers of ε does apply.
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where F is an order-1 function that parameterizes the effects of the strong sector, and

Dµ is the gauge covariant derivative of the standard model. The factors of 4π are put in

according to NDA, which assumes that the theory is strongly coupled at the scale Λ with

no large or small parameters other than ε. Here we are again using the assumption that

this is a small-N theory. Expanding out Eq. (3.16), we obtain

Leff = |Dh|2 −m2
h|h|2 − 1

4λ|h|4 + · · · , (3.17)

with

m2
h ∼ εΛ2, λ ∼ 16π2ε2. (3.18)

Note that the result for the mass agrees with the RS calculation (3.4). If m2
h < 0, elec-

troweak symmetry will be spontaneously broken by a VEV for h, and we obtain

m2
W = 1

2g
2
2v

2, m2
Z = 1

2(g2
1 + g2

2)v2 (3.19)

from the h kinetic term, where

〈h〉 =

(
0

v

)
, (3.20)

with v = 174 GeV as in the standard model. We therefore obtain

Λ ∼ 4π
√
ε v. (3.21)

The scale of new strong dynamics is parametrically below the scale ΛEW ∼ 4πv ∼ 2 TeV,

but for ε ∼ 1/few there are large uncertainties of the NDA estimates.10

We now discuss the couplings of h to the standard model gauge bosons. Because

〈4π√ε h/Λ〉 ∼ 1, the function F in the effective lagrangian Eq. (3.16) contains all possible

electroweak breaking couplings of h and gauge bosons with O(1) coefficients in terms of

4π
√
ε h/Λ and Λ. For example, the leading correction to the hWW coupling is

∆Leff ∼
Λ4

16π2

(
g2Wµ

Λ

)2 4π
√
ε h

Λ
∼ εg2

2vW
2
µh+ · · · . (3.22)

This gives an O(ε) correction to the coupling of the Higgs to gauge bosons, as anticipated

from the RS computation (3.12).

We now consider the couplings to the top quark. In the conformal regime, we add a

coupling of the form

∆L = ct(hQt
c + h.c.) (3.23)

between the scalar doublet h and the elementary top quark. The field h has an anomalous

dimension ε that suppresses the coupling ct at low energies, so that the top quark Yukawa

coupling at the weak scale is

yt = ct(Λt)

(
Λ

Λt

)ε
, (3.24)

10Note that it does not make sense to take ε to be smaller than the gauge loop contribution to the

anomalous dimension, ∼ g2
2/16π2. In fact, at this critical value we have Λ ∼ g2v ∼ mW .
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Fig. 2. Correction to the htt̄ coupling in the low energy effective theory below Λ. The

bullet represents a local operator that includes CFT contributions to the 3-point function

as well.

where Λt is the scale where the top quark coupling is generated. As discussed above,

we assume that ct(Λt) is sufficiently large that ytv = mt at the weak scale. The leading

coupling of h to the top quark is therefore the same as in the standard model. The leading

corrections to this come from h loop effects such as the one shown in figure 2, which gives

∆yt ∼
y2
t

16π2

Λ4

16π2

(
4π
√
ε h

Λ

)3
1

mh
∼ y2

t

4π
ε, (3.25)

where the factor of 1/mh arises because the diagram is IR dominated. This diagram is the

same as in the standard model, except that the 3 point Higgs interaction does not have

the standard model value. This can be seen by expanding the function F in Eq. (3.16),

where we see that the VEV and the 2- and 3-point functions of the Higgs expanded about

the VEV are independent. This is expected to give a deviation from the standard model

prediction of between 1% and 10%.

3.3 Phenomenology

We now turn to the phenomenology of this class of models. One important question in

these models is the size of precision electroweak corrections. The effective operator that

contributes to S is obtained from the effective lagrangian Eq. (3.16):

∆Leff ∼
εg1g2

Λ2
h†W µνhBµν ∼

g1g2

16π2
W µν

3 Bµν + · · · . (3.26)

This gives a contribution to S with NDA strength, S ∼ 1/π, i.e. similar to small-N

technicolor. The T parameter requires breaking of custodial symmetry, and therefore
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requires an additional hypercharge loop. The effective coupling that gives rise to T is

therefore

∆Leff ∼
g2

1

16π2

16π2ε2

Λ2
|h†Dµh|2 ∼

εg2
1m

2
Z

16π2
Z2
µ + · · · , (3.27)

where Zµ is the Z boson field. This gives a contribution to T that is parametrically smaller

than the NDA value:

T ∼ ε

4π
∼ ε TNDA. (3.28)

Taken at face value, this is not so great for precision electroweak fits, since the best fit

for nonzero electroweak corrections has both S and T positive and comparable. However,

given the uncertainties in these estimates these theories are still viable.

The phenomenology at high energy colliders depends on the structure of strong reso-

nances at the TeV scale. We cannot make any rigorous prediction about these resonances

other than the fact that they must exist to unitarize WW scattering (the ‘no lose theo-

rem’). In the case where the small dimension of the electroweak order parameter is due to

a moderately small parameter in the fundamental theory, we argued above that there will

be a prominent scalar resonance below the TeV scale whose couplings to gauge bosons and

the top quark are parametrically close to the standard-model values. The deviation from

the standard-model value for the coupling to the top quark is quite small, between 1%

and 10%, while the deviation from the standard model value for the φWW coupling is of

order ε, which is expected to be at least 10%. The possibility of studying a ‘non-standard’

heavy Higgs-like scalar at the LHC has been discussed by a number of authors [24]. The

discovery of such a particle and the measurement of deviations from the standard-model

predictions for its couplings may well be the first indication of strong conformal dynamics

as the origin of electroweak symmetry breaking.

4. Conclusions

We have described a new paradigm for dynamical electroweak symmetry breaking in which

the electroweak symmetry breaking sector is a conformal field theory (CFT) above the

TeV scale. Conformal symmetry and electroweak symmetry are broken at the TeV scale,

triggered by an asymptotically-free gauge group or a slightly relevant operator becoming

strong, or by a relevant operator with a coefficient made small naturally by symmetries.

Any of these mechanisms stabilizes the weak scale against quantum corrections and gives

a solution of the hierarchy problem.

The flavor problem of dynamical electroweak symmetry breaking is solved if the di-

mension of the CFT operator that acts as the order parameter for electroweak symmetry

breaking has a dimension d close to 1, the dimension of an elementary Higgs scalar field.

For d = 1 + ε, the scale where the top quark Yukawa coupling becomes strong is raised to

ΛEW(ΛEW/mt)
1/ε, where ΛEW ∼ 2 TeV. For ε ∼ 1/few, this is large enough to effectively

decouple flavor.
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Finding a CFT with the required properties is highly nontrivial. Weakly coupled CFT’s

can certainly have operators with dimension near 1 in the form of an elementary scalar Higgs

field h, but this clearly does not solve the hierarchy problem because of the existence of the

relevant operator h†h with dimension near 2. What is required is a strongly-coupled CFT

with a scalar operator O with dimension d = 1 + ε, where strong CFT dynamics renders

the operator O†O irrelevant by giving it a large anomalous dimension. We have shown,

however, that strong CFT’s with large N , including those obtained from the AdS/CFT

correspondence, have the property that the dimension of O†O is close to 2d, and are

therefore fine-tuned for d < 2.

We are therefore led to consider strongly-coupled, small-N CFT’s. These theories also

naturally have small electroweak precision corrections, addressing another strong constraint

on models of dynamical electroweak symmetry breaking. The difficulty is that there are

no reliable theoretical tools for studying such theories, and in fact no explicit examples are

known. In the case where the smallness of ε is due to a small parameter in the fundamental

theory, we argued that there will be a prominent scalar resonance with couplings to gauge

bosons and the top quark that are comparable to that of a heavy standard-model Higgs,

but with O(ε) deviations that can be measured at LHC. We believe that this gives strong

motivation to experimental studies of a heavy Higgs-like particle, and look forward to a

decisive test of these ideas.
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A. Composite fermions

In this appendix, we consider the possibility that fermion masses are generated by mixing

with fermionic operators of the CFT. That is, we suppose that the CFT contains operators

with quantum numbers conjugate to the standard model fermion fields, and we include

interaction terms

δL = zQQQc + zuu
cU + zdd

cD + zLLLc + zee
cE , (A.1)

where Q, . . . , ec are standard model fermions, and Qc, . . . , E are fermionic CFT operators.

The unitarity limit on the dimension of the CFT operators is d = 3
2 , the dimension of

a free fermion, so the couplings zQ, . . . , ze can be marginal or even relevant without ap-

proaching the unitarity limit for CFT operators. This means that the flavor scale where

these operators are generated can be decoupled completely, just as in the standard model.

We will show that this mechanism generally require a mild ∼ 10% tuning to accomodate

constraints on Z → bb̄ and the T parameter together with the heavy top mass.
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This mechanism for generating fermion masses was first considered in the context of

technicolor theories in Ref. [16]. It has been revived recently in the context of RS theories,

where it corresponds to putting standard model fermions in the bulk [15]. We consider

this framework here using our CFT language, which makes it clear that our analysis is

model-independent.

In Eq. (A.1), the couplings zQ, . . . , ze are 3× 3 matrices in flavor space. These z’s act

as spurions that violate the SU(3)5 flavor symmetry that is otherwise present, and their

transformation properties under the flavor symmetry determine the structure of flavor

violation in this model. We will normalize the CFT operators Qc, . . . , E so that z ∼
1 corresponds to strong coupling at the scale of conformal and electroweak symmetry

breaking Λ. If the conformal and electroweak symmetry breaking is strong with no large

or small parameters, NDA tells us that the quark mass matrices are

mu = cΛz†Qzu, md = cΛz†Qzd, (A.2)

where c ∼ 1.11 To get the top quark mass, we must therefore have

(z†Qzu)33 ∼
mt

Λ
∼ 1

10
. (A.3)

Because the z’s violate flavor and custodial symmetry, they give rise to corrections

to the ρ parameter and the Z → bb̄ vertex. Note that the leading corrections to the ρ

parameter do not involve internal gauge bosons, so we can ignore the custodial symmetry

breaking from U(1)Y . In this limit the standard model and the CFT each have a separate

SU(2)L × SU(2)R symmetry, which are broken to diagonal subgroups by zQ and zu,d.

Specifically, the z’s transform like

zL −→ LSM zLL
†
CFT

zR −→ RSM zRR
†
CFT, (A.4)

where zL ≡ zQ and zR ≡ diag(zd, zu). Electroweak symmetry is broken with NDA strength

in the strong sector in the pattern [SU(2)L × SU(2)R]CFT → SU(2)cust,CFT, so custodial

symmetry breaking in the standard model sector depends on the spurion zuz
†
u− zdz†d. This

spurion has ∆Icust,SM = 1, while a custodial symmetry violating contribution to the Z

mass has ∆Icust,SM = 2. Therefore12

∆M2
Z ∼

g2Λ2

16π2
tr(zuz

†
u − zdz†d)2 ∼ g2Λ2

16π2
tr(zuz

†
u)2 (A.5)

In order to satisfy the constraint on the ρ (or T ) parameter, we require

tr(zuz
†
u)2 <∼

1

100
. (A.6)

11We assume that the CFT preserves custodial symmetry so that the coefficients c are the same for up-

and down-type fermions.
12The first version of this paper argued that ∆M 2

Z ∼ z†uzu. We thank Kaustubh Agashe for pointing out

our mistake.
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On the other hand, the correction to the Z → bLb̄L vertex is

∆gZ→bb̄ ∼ 4π
g

4π
(z†QzQ)33. (A.7)

Satisfying the experimental constraint requires

(z†QzQ)33 <∼
1

100
. (A.8)

We see that generically there is a tension in satisfying all three constraints: the ρ

parameter constraint (A.6), the Z → bb̄ constraint (A.8) and the top mass condition (A.3).

For example, with (zQ)33 ∼ 1, Eq. (A.3) forces (zu)33 ∼ 1
10 , which makes the ρ constraint

completely safe while requiring an additional contribution to the Z → bb̄ coupling that

cancels the non-standard one to 1% accuracy. With zu ∼ 1, the Z → bb̄ constraint is just

on the edge while the ρ constraint needs 1% tuning. However, we can ‘compromise’ and

choose (zQ)33 ∼ (zu)33 ∼ 1
3 , which puts us just on the edge of the ρ constraint, while we

must find additional contributions to Z → bb̄ that cancel the unwanted CFT contribution

to 10% accuracy. Therefore, in this part of the parameter space, this framework is viable

with mild tuning.
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